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COMPLEX RESILIENT 

INTELLIGENT SYSTEMS

Complex Sociotechnical Systems and Emergence

Figure 1: SARS (2003), BP Deepwater Horizon Oil Spill (2010), Subprime Crisis (2008),
and Northeast Blackout (2003)

I Complex adaptive systems engineering
I Need to go beyond analyzing them as

independent one-off accidents
I Common underlying patterns behind systemic

failures
I Need a unifying complex systems engineering

perspective of sociotechnical systems
I Need to recognize emergent phenomena and

understand the underlying mechanisms

I Failures (lessons) at all levels
I Individual
I Corporation
I Corporate board
I Government: policies and regulations
I Community
I National

I Teleo-Centric System Model for Analyzing
Risks and Threats
(TeCSMART) (Venkatasubramanian and
Zhang, 2016) Figure 2: TeCSMART

Figure 3: Comparative Analysis

Causal Modeling of Process Systems

I How do we understand the causal links between different variables in
a process?

I Creating causal graphs using entropic correlation in time
I Data-driven setting for identifying flow of information in a process system
I Captures higher order correlations between system variables
I Hierarchical strategy to estimate causal links for the plant-level operations

I Directed Graph As a Modeling Tool for Analyzing Systemic
Risk in Process Systems (Suresh et al., 2019)

Figure 4: Tennessee Eastman Process, Plant-level causal model, Unit level causal models

Process Modeling from Data

I What do neural networks learn?

I Hidden representations of deep
neural network towards
function approximation and
classification

I Deep nets, a few complex patterns

I Wide nets, a lot of simple patterns

I Black box models like neural
networks fail to explain the reason
for their recommendation

I Model Hypothesis Generation using
Genetic Algorithm

I Mechanism identification using
Genetic Feature Extraction and
Statistical Testing (GFEST)

Figure 5: Data, Deep Network
Representation, Wide Network
Representation

Figure 6: GFEST algorithm
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Multi-Agent Control with Soft Feedback

I How to coordinate multiple intelligent agents such that the crowd is
collectively wiser?

I Regulator’s dilemma: balancing between over- and under-regulation
I Over-regulation hinders innovation, progress, and economic growth
I Under-regulation results in safety threats and risk

The i -th agent can accept, reject, or partially accept the soft feedback u:

z+
i = (1−βi)

(
gi(zi)+ωi

)
+βiu, βi ∈ [0, 1], ωi ∼ N (0, σω), u =

∑
i

zi
n

I Social Influence Makes Self-Interested Crowds Smarter:
An Optimal Control Perspective (Luo et al., 2018)
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Figure 7: Experiment, System Identification, and Optimal Control Results

Agent Performance on a Network Topology

I Optimal communication architectures
I Particle Swarm Optimization as test bed

I High information transfer hinders exploration
I Low information transfer hinders efficiency
I Robust topologies are generally not efficient

I Design guidelines to ensure efficient and robust networks

Figure 8: Design Spectrum, Performance Results
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