

Development of novel catalysts in heterogeneous catalysis and electrocatalysis

Single crystal surfaces:

Fundamental atomic-level understanding through experiments and theory

Supported catalysts:

 More relevant to industrial catalysts and commercial processes

> **Research approach: Combining model surfaces** with supported catalysts

W. Yu, M.D. Porosoff, J. G. Chen, Chemical Reviews (2012).

Bimetallic and carbide catalysts offer the advantages of reduced cost and enhanced activity, selectivity and stability.

Recent Research in Chen Group

Tuning selectivity with nonprecious metal catalysts

Fe modification of Ni catalysts improves CO selectivity while maintaining high catalytic activity

In-situ X-ray spectroscopy probes the phase and function of bimetallic catalysts

L.R. Winter, E. Gomez, B. Yan, S. Yao, J.G. Chen, *Applied Catalysis B: Environmental*

Tandem reactions of CO₂ reduction and ethane aromatization

- Phosphorus (P)- and gallium (Ga)modified ZSM-5 catalyzes a onestep reaction from CO₂ and ethane to aromatics
- DFT calculations provide insight into the effect of Ga- and P- modification, and the role of CO_2 .

E. Gomez, X. Nie, J.H. Lee, Z. Xie and J.G. Chen, Journal of the American Chemical Society (2019).

Example 2: Conversion of inexpensive molecules into valuable chemicals

Selective scission of C-O bonds in the HDO reaction of glycerol

W. Wan, S. Ammal, Z. Lin, K. You, A. Heyden, J.G. Chen, Nature Communications

Electrocatalytic (EC),

